Modeling Forest Trees and Stands

79,75 €
Tomé, Margarida, Gregoire, Timothy G., Burkhart, Harold E.
Fecha Publicacion
1 mar. 2011
About this textbook
  • Contains state-of-the-art information on modelling at all levels
    World-leading authors
    International focus and theoretical basis
    Focus on applied topics in forestry – including silvicultural treatment and wood quality

This book will provide a comprehensive summary of state-of-the-art methods for empirical modeling of forest trees and stands. Quantifying the volume, taper, form, weight and biomass of trees will be provided. In-depth coverage of modeling forest stand development will include methods for quantifying site quality as well as stand and point density. Whole-stand, size-class, and individual-tree modeling approaches will be presented in detail followed by chapters on incorporating silvicuultural treatments and wood characteristics in growth and yield models. The book will conclude with a chapter on choosing an appropriate level of resolution for forest stand modeling, evaluating and implementing growth and yield models. Primarily a textbook but important reference for researchers using these methods.

This book is intended for use as a text for graduate-level courses and as a reference for researchers working in growth and yield modeling. It is aimed at summarizing and interpreting past results from modeling forest trees and stands, thus providing a readily accessible base from which future researchers can build and move forward.

Written for:

Textbook for graduate-level courses in forest ecology and management, forest growth and yield modelling, forest biometrics, quantitative silviculture, ecological modelling, etc.

  • Forest biometrics
  • Forest ecology
  • Forest growth
  • Forest management
  • Quantitative silviculture
  • Yield modeling

Table of contents

1. Introduction.- 2. Tree Form and Stem Taper. Tree form. Simple taper functions. Segmented taper functions. Variable-exponent approach to taper modeling. Volume estimation from taper functions. Inclusion of additional predictor variables. Mixed models approach to localizing (calibrating) taper functions.- 3. Tree-stem Volume Equations. Purpose of volume equations. Volume for single-stemmed (excurrent branching) species. Merchantable volume. Implied taper equations. Compatible stem volume and taper functions. Inclusion of variables in addition to dbh and total height. Volume prediction for irregular (decurrent and shrub form) stems. Stem quality assessment and prediction.- 4. Tree Weight and Biomass Estimation. Estimating green weight of stems. Estimating dry weight of stems. Biomass estimation. Components: stem, branches, foliage, roots. Techniques to insure additivity.- 5. Quantifying Tree Crowns. Crown dimensions. Foliage distribution. Fractal geometry.- 6. Growth Functions. Growth expressed in mathematical terms. Properties of growth functions. Growth functions commonly used in forest modeling. Estimating and interpreting parameters of growth functions.- 7. Quantifying Site Quality. Historical overview. Justification (rationale) for height/age method. Impacts of changing environmental conditions and management practices on site index. Definitions of dominant height. Data for height/age curve construction. Temporary plots. Permanent plots. Stem analysis. Types of site index equations. Anamorphic. Polymorphic. Developing site index equations. Guide curve method. Differential equations. Difference equations. Statistical issues associated with indexed relationships. Base-age invariance. Fitting indexed (self-referencing) equations.- 8. Quantifying Stand Density. Stocking and stand density. Trees/unit area. Basal area/unit area. Maximum size/density relationships. Reineke’s SDI. -3/2 power law. Equivalence of SDI and -3/2. Methods for fitting maximum size/density relationships. Traditional approach. Stochastic frontier regression. Segmented regression. Relative spacing. Equivalence to SDI and -3/2. Other proposed measures of stand. Efficacy of various stand density measures for growth and yield prediction.- 9. Measures of Point Density. Distance-weighted size ratios. Area overlap. Area potentially available. Extensions (enhancements) to traditional indices via Ecological Field Theory, etc.- 10. Growth and Yield Models (short introductory chapter to remainder of book). Overview. Data for modeling. Temporary plots. Permanent plots. Need for and applications of growth and yield models.- 11. Whole-stand Models for Even-aged Stands. Compatible models. Simultaneous fitting of yield and basal area projection equations. State-space approach (concise presentation with citations for further detail).- 12. Size-class Distribution Models for Even-aged Stands. Concept of disaggregation. Diameter distribution (pdf) approach. Height/diameter models.- 13. Individual-tree Models for Even-aged Stands. Distance independent. Distance dependent. Quantifying spatial patterns.- 14. Growth and Yield Models for Uneven-aged Stands. Special considerations in modeling uneven-aged stands. Whole-stand approach. Stand-table projection models. Matrix models. Individual tree models. Distance independent. Distance dependent.- 15. Incorporating Silvicultural Treatments in Stand Models. Thinning. Vegetation control. Fertilizer applications. Genetic enhancement.- 16. Incorporating Wood Characteristics (Wood Quality) in Growth and Yield Models. Need for wood quality information. Juvenile/mature wood. Wood density (specific gravity). Branch (knot) distribution.- 17. Choosing a Level of Modeling Resolution; Verifying, Validating, and Implementing. Forest Stand Models. Level of modeling resolution. Verification. Validation. Implementing models.- Appendix.-

Escribir Su propia reseña
Solo usuarios registrados pueden escribir comentarios. Por favor, iniciar sesión o crear una cuenta